А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

– прогремел Смолин.
Кое-что, – скромно сказал я. И в доказательство перечислил несколько десятков: от спуска Ганса Гартмана в 1911 году на глубину 458 метров до рекордного, при котором Жак Пикар и Дан Уолш достигли 10919 метров – дна Марианской впадины.
– Здорово! – восхитился Смолин.
Это «здорово» относилось, конечно, к памяти. При всех достижениях последних лет человек ещё очень далёк от покорения океана. В легководолазном скафандре или акваланге обычно удается достичь глубины 100 метров. Жёсткие, «бронированные» скафандры выдерживают спуск до 200–250 метров. Жак-Ив Кусто на подводном корабле «Дениза» («Ныряющее блюдце») достиг 300 метров. Спуски глубоководных аппаратов – батисфер и батискафов – позволили исследовать лишь ничтожные участки дна. Колоссальные пространства океана площадью в миллионы квадратных километров никогда не видели человека, своего «властелина».
Да и о какой власти можно говорить при нынешних технических средствах. Человек, закованный в скафандр или упрятанный в кабину батискафа, гораздо больше похож на пленника океана, чем на его властелина.
В июле 1963 года Жак-Ив Кусто с группой товарищей построил «Преконтинент-2» – первый в мире подводный посёлок. Семь его обитателей жили в превосходных условиях. У них было всё необходимое: аппарат для кондиционирования воздуха, электрическая кухня, телефоны и даже телевизор. «Рано или поздно, – сказал потом Кусто, – человечество поселится на дне моря. Наш опыт – начало большого вторжения. В океане появятся города, больницы, театры…»
Ясно, однако – и сам Кусто это отлично понимал, – что нет смысла «вторгаться» в океан и сидеть взаперти, хотя бы и в доме со всеми удобствами. Нужно, чтобы человек мог свободно передвигаться под водой, вести исследования, работать.
В известном романе Александра Беляева Ихтиандр становится «человеком-амфибией» после операции. Хирург «монтирует» в его теле вторую систему дыхания – жабры.
Идея интересна. Но это далеко не единственный и, конечно, не самый лёгкий путь. Мне кажется, что приспособление человека к жизни под водой будет достигнуто по-другому – средствами не медицины, а техники.
В чём тут препятствие? Конечно, не в отсутствии кислорода. В воде его больше чем достаточно. Беда в том, что и химически связанный, и растворенный в воде кислород одинаково не усваиваются нашими органами дыхания. Нужен «посредник» – прибор или аппарат, который извлекал бы кислород одним из двух способов: либо разлагая воду, либо выделяя кислород, растворённый в ней.
Разложение воды требует сравнительно большого расхода энергии. Само по себе это не страшно, ведь в общем-то кислорода нужно немного. Однако источник этой энергии, «электростанция», должен двигаться вместе с человеком (не тянуть же за человеком провода). Отсюда условие – лёгкость и компактность.
Таких установок нет. Нынешние аккумуляторы тяжелы и громоздки. Создать миниатюрную «атомную электростанцию» чрезвычайно трудно. И, пожалуй, ещё труднее защитить человека от излучения.
Невозможно. Невозможно только пока. Вполне вероятно, что наука и техника завтрашнего дня создадут мощные и компактные электростанции. Огромные водные пространства Земли станут источником кислорода.
Рыбы дышат, добывая из воды растворённый в ней кислород. Следовательно, вполне можно представить аппарат, «искусственные жабры», который действовал бы примерно по той же схеме.
Тут нужно коснуться одного довольно любопытного заблуждения. В своё время научные критики «человека-амфибии» отмечали, что Ихтиандр даже после пересадки жабр не смог бы жить в воде. Вода бедна кислородом, и жабры извлекают его в небольших количествах. Мало кислорода – мало энергии. Именно поэтому рыба – животное холоднокровное. Её организм не в состоянии выработать достаточно тепла, чтобы нагреть тело выше температуры окружающей воды. Но человек – существо теплокровное. И если посадить его на такой голодный «паек»…
Убедительно? Было бы убедительно, если бы не одно обстоятельство. В южных морях живут и благополучно здравствуют… теплокровные тунцовые рыбы. Их организм столь же щедро снабжается кислородом, и температура их тела так же высока, как у наземных животных. Меч-рыба и парусная рыба мчатся в воде со скоростью девяносто километров в час. Можно представить себе, сколько кислорода расходует организм!
Скорость их и выручает. Через широко раскрытые жабры проносятся тонны воды. Бедность воды кислородом уравновешивается её изобилием…
Таким образом, дело в конструкции. Литр воды растворяет 35–40 кубических сантиметров кислорода. Для дыхания человека нужно 2–3 литра кислорода в минуту. Следовательно, сквозь «искусственные жабры» ежеминутно должно проходить около 100 литров воды, 6 тонн в час.
Не мало, но и не так уж много. Найти подходящий насос лёгко, было бы чем приводить его в движение. Вопрос снова упирается в источник энергии – нужна мощная и компактная электростанция…
– Дело будущего, – заметил Д.Д.
– А что вы скажете об опыте в Лейденском университете? – возразил Гена.
– Скажу, что я его просто не знаю.
– А вы, Сергей Петрович?
– К сожалению, не читал, – признался Смолин.
– А что скажет Володя?
– Странный опыт, в котором будущее причудливо сплетено с настоящим. Да, пожалуй, и с прошлым. Университет – один из старейших в Европе. Казалось бы, вековые традиции, рутина… И вдруг такой скачок в необычное.
Голландия. Лейденский университет. На лабораторном столе – сосуд, заполненный водой. В сосуде – мышь. Сидит и, словно ничего особенного не происходит, вертит головой, шевелит хвостом. Под водой…
Мышь самая обычная, никакой пересадки жабр ей не делали. А вот вода действительно не совсем обычна. Через неё пропустили кислород под давлением 8 атмосфер. С повышением давления растворимость газов, как известно, растёт. Воду обогатили, «пересытили» кислородом, как «газированную воду» пересыщают углекислым газом. И ещё – в воду добавили поваренную соль в «физиологической концентрации», соответствующей потребностям организма.
Это всё. Кислород и соль превратили водопроводную воду в среду, пригодную для жизни. В этой воде мышь обитала в течение четырёх часов. А когда в сосуд ввели вещества, связывающие углекислый газ, мышь смогла прожить почти сутки. Гораздо больше, чем позволяет самый совершенный кислородный аппарат…
Учёные были удивлены. Но не тем, что она жила, а тем, что она погибала. Кислорода в воде достаточно, и организм его усваивает – опыт это доказал. В чём же дело?
Существуют различные предположения. Может быть, вода вызывает повреждение нежных лёгочных тканей. Может быть, само дыхание гораздо более плотной, чем воздух, водой истощает организм. Наконец не исключено, что кислород при высоком давлении вредно действует на лёгкие.
Говорить о практическом использовании этого явления пока рано. Однако первые опыты обнадеживают. Кислородная «подкормка» может открыть совершенно новые и неожиданные перспективы…
– «Есть многое на свете, друг Горацио, что и не снилось нашим мудрецам», – задумчиво процитировал Д.Д.
– Почему же не снилось? – нахохлился Смолин. – Есть, знаете ли, разные идеи. Может, не такие эффектные, но вполне практические. Ну, к примеру… Рыб, как вы, очевидно, догадываетесь, не надо учить дыханию «водой», они отлично умеют. Из этого, однако, не следует, что им всё равно, чем дышать. Рыбы любят воду, богатую кислородом, и избегают мест, где кислорода мало или вода отравлена вредными газами.
Отсюда мысль. Выбрать в море участки и насыщать их кислородом. У рыб хорошая «память», они привыкнут и будут приходить сюда, как коровы приходят на пастбище. Такое «одомашнивание», согласитесь, неизмеримо эффективнее, чем разведение рыбы в искусственных бассейнах.
В природных условиях на даровом питании и с кислородной «подкормкой» рыбы будут отлично расти. И ловить их можно на выбор – почти как из аквариума. Может быть, пройдёт немного лет, и кислородные «плантации» (или «заповедники»? Как бы ты сказал, Володя?) станут главной опорой рыбных хозяйств…
– Да, кстати, – перебил себя Смолин, – вы читали… Впрочем, нет, он пока не опубликован. Рассказ фантастический, научно-фантастический, как любят выражаться нынче. А я прочёл, принёс в Комитет, и у нас заинтересовались. Ну, не рассказом, конечно. Идеей. Помните Багрицкого «Контрабандисты»?
Я помнил.
…Ай, Чёрное море,
Хорошее море!..
– Хорошее море, – с чувством повторил Смолин. – И мало кто знает, что это оно только сверху хорошее. До глубины 125–200 метров. А ниже…
Чёрное море гораздо беднее рыбой, чем родственное ему Средиземное. Причина в том, что растительный и животный мир Черноморья сосредоточен в верхнем узком слое воды. Ниже 200 метров (а средняя глубина здесь 1271 метр) простирается мертвая зона.
Это явление редкое. Обычно моря и океаны заселены на всю глубину. Даже на дне Марианской впадины Пикар видел в иллюминатор батискафа креветок и плоскую рыбу, похожую на камбалу…
Но в Чёрном море обитают бактерии, вырабатывающие сероводород. Сероводород отравляет воду, затрудняет насыщение её кислородом. А рельеф дна таков, что перемешивание воды идёт чрезвычайно медленно.
– Догадываетесь? – Смолин победно оглядел нас. – Основная идея – кстати, вполне реальная – перестройка Чёрного моря. Сероводород вымывают из воды кислородом. Трудности?.. Конечно, велики. Но и эффект колоссальный. Шутка сказать: открыть для жизни целое море!
«ЧЕМОДАНЧИК» И ТУМАННОСТЬ АНДРОМЕДЫ
– Шутка сказать: открыть для жизни целую планету!
Гена лукаво поглядывает на Смолина, ждёт возражений. Но Смолин кивает. Когда-то (лет десять назад) об освоении космоса можно было спорить. Теперь ясно – задача колоссальной важности, и к тому же вполне реальная.
В наши земные представления космическая эпоха ворвалась с быстротой ракеты. Недавно мысль о полёте к Луне или Марсу казалась верхом дерзости. Сейчас звезда Проксима Центавра, удаленная от нас на 40 000 миллиардов километров, считается «объектом» довольно близким и потому не особенно значительным.
Учёных (не говоря уже о фантастах) интересуют более трудные «цели»: звезда Бетельгейзе – 300 световых лет, шаровое звёздное скопление в Геркулесе – 34 тысячи, туманность Андромеды – полтора миллиона световых лет.
Резкая смена масштабов (от земных к космическим) с трудом укладывается в сознании. Сначала представляется, что проблему межзвёздных перелётов можно решить с помощью школьной формулы, которая связывает путь, скорость и время. Чтобы преодолеть такие расстояния, нужно увеличить скорость, и тогда время полета останется в привычных пределах – неделя, месяц, год…
Отсюда повышенный интерес к конструкции ракетных двигателей.
Казалось, стоит справиться с этой главной проблемой, и всё останется по-прежнему. Путешественник (космический!) захватит с собой чемоданчик со сменой белья и продуктами, попрощается с родными, поднимется на корабль и…
После этого «и» возникают проблемы чрезвычайно большие и чрезвычайно сложные. При самых благоприятных условиях, с учетом «парадокса Эйнштейна» (зависимость времени путешественника от скорости движения) полет к звёздам займет годы. А поскольку ни гостиниц, ни магазинов в космосе нет, пополнить запасы в пути будет довольно трудно.
Полёт на Луну потребует, вероятно, нескольких дней, тут ещё можно обойтись «чемоданчиком». Полёт на Венеру и Марс продлится несколько месяцев. Взять с собой всё необходимое для такого путешествия уже трудно. А если продолжительность полета несколько лет?..
В условиях космического корабля человеку нужно ежедневно около 1100 граммов кислорода, 900 граммов пищевых продуктов, не меньше 4 литров воды – для питья и гигиены. Итого 6 килограммов.
Вроде немного. Представим себе, однако, корабль с экипажем 20 человек, отправляющийся на десять лет. «Чемоданчик» со всем необходимым для такого путешествия будет весить больше четырёхсот тонн.
А что это за «чемоданчик»? Продукты и воду можно поместить в трюмы. Но кислород? Баллоны с газом тяжелы и громоздки. Жидкий кислород быстро испаряется. Химические вещества бедны кислородом.
При дыхании человек выделяет углекислый газ и пары воды. Чтобы атмосфера корабля оставалась чистой, их надо удалять. За борт? Но при этом почти неизбежны потери дорогого воздуха. К тому же человек в космосе должен сохранять осторожность. «Засоряя» межпланетное пространство, он рискует занести туда земную жизнь. Это затруднило бы поиски внеземных форм, могло бы привести и к более опасным последствиям – мы не знаем, во что превратится земная жизнь за пределами нашей планеты.
Выход напрашивается. Организовать тут же, на борту корабля, переработку «отходов». Воду и углекислый газ разложить на элементы. Кислород использовать для дыхания, углерод и водород для синтеза органических веществ.
Теоретически таким способом можно получить жиры, белки, углеводы.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Поиск книг  2500 книг фантастики  4500 книг фэнтези  500 рассказов